DATA MINING DENGAN 2 (DUA) MODEL KLASIFIKASI UNTUK PREDIKSI KINERJA MAHASISWA
https://doi.org/10.33060/JIK/2021/Vol10.Iss2.229
Keywords:
C4.5, NBC, IPK, kinerja, mahasiswaAbstract
Berlimpahnya data mahasiswa pada perguruan tinggi dapat digunakan secara maksimal sesuai dengan kebutuhan dan mampu diolah menjadi informasi yang bermanfaat sehingga dapat mengetahui hubungan antara atribut data yang di dalamnya dapat dianalisis dan diharapkan memiliki keluaran berupa kinerja mahasiswa yang berhubungan Hasil Belajar (IPK). Metode yang digunakan mengunakan metode CRISP-DM yang terdiri dari 6 tahapan. Ada 2 (dua) metode klasifikasi yang digunakan yaitu Naïve Bayes Classifier dan Decision Tree Algoritma C4.5 untuk dilakukan perbandingan algoritma mana yang lebih baik untuk memprediksi kinerja mahasiswa. Hasil dari implementasi data mining dengan menggunakan software Rapidminer, dilakukan terhadap dua model algoritma klasifikasi yaitu C4.5 dan NBC kemudian memasukan dataset sebagai bahan uji untuk kedua model tersebut yang di dalamnya terdapat data latih dan data uji. Berdasarkan nilai akurasi terbaik pada model algoritma Naive Bayes Classifier (NBC) adalah 80% sedangkan berdasarkan nilai akurasi terbaik pada model algoritma C4.5 adalah 60 %.
Keywords: C4.5, NBC, IPK, kinerja, mahasiswa
Downloads
References
Larose, D. T. (2006). DATA MINING
METHODS AND MODELS. In
Contemporary Psychology: A Journal of
Reviews (Vol. 21).
https://doi.org/10.1037/014836
Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data. In Discovering Knowledge in Data. https://doi.org/10.1002/9781118874059
Sabna, E. (2019). Pemanfaatan Data Mining Untuk Penempatan Buku Di Perpustakaan Menggunakan Metode Association Rule: Pemanfaatan Data Mining Untuk Penempatan Buku Di Perpustakaan Menggunakan Metode Association Rule. Jurnal Ilmu Komputer, 8(2), 59-63.
Rapidminer Inc. (2019). Split Validation
(RapidMiner Studio Core). Retrieved
May 8, 2019, from
https://docs.rapidminer.com/latest/studio/operators/validation/split_validation.html
Sabna, E., & Muhardi, M. (2016). Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, Dan Hasil Belajar. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi
Tair, M. M. A., & El-halees, A. M. (2012). Mining Educational Data to Improve Students ’Performance : A Case Study. Journal of Theoretical and Applied Information Technology, 2(2), 140–146.
Tempola, F., Muhammad, M., & Khairan, A.
(2018). Perbandingan Klasifikasi Antara Knn Dan Naive Bayes Pada Penentuan Status Gunung Berapi Dengan K-Fold Cross Validation Comparison of Classification Between Knn and Naïve Bayes At the Determination of the Volcanic Status With K-Fold Cross. 5(5),577–584.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jurnal Ilmu Komputer
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.